181 research outputs found

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176

    The Grand Challenges and Myths of Neural-Symbolic Computation

    Get PDF
    The construction of computational cognitive models integrating the connectionist and symbolic paradigms of artificial intelligence is a standing research issue in the field. The combination of logic-based inference and connectionist learning systems may lead to the construction of semantically sound computational cognitive models in artificial intelligence, computer and cognitive sciences. Over the last decades, results regarding the computation and learning of classical reasoning within neural networks have been promising. Nonetheless, there still remains much do be done. Artificial intelligence, cognitive and computer science are strongly based on several non-classical reasoning formalisms, methodologies and logics. In knowledge representation, distributed systems, hardware design, theorem proving, systems specification and verification classical and non-classical logics have had a great impact on theory and real-world applications. Several challenges for neural-symbolic computation are pointed out, in particular for classical and non-classical computation in connectionist systems. We also analyse myths about neural-symbolic computation and shed new light on them considering recent research advances

    A Neural Lambda Calculus: Neurosymbolic AI meets the foundations of computing and functional programming

    Full text link
    Over the last decades, deep neural networks based-models became the dominant paradigm in machine learning. Further, the use of artificial neural networks in symbolic learning has been seen as increasingly relevant recently. To study the capabilities of neural networks in the symbolic AI domain, researchers have explored the ability of deep neural networks to learn mathematical constructions, such as addition and multiplication, logic inference, such as theorem provers, and even the execution of computer programs. The latter is known to be too complex a task for neural networks. Therefore, the results were not always successful, and often required the introduction of biased elements in the learning process, in addition to restricting the scope of possible programs to be executed. In this work, we will analyze the ability of neural networks to learn how to execute programs as a whole. To do so, we propose a different approach. Instead of using an imperative programming language, with complex structures, we use the Lambda Calculus ({\lambda}-Calculus), a simple, but Turing-Complete mathematical formalism, which serves as the basis for modern functional programming languages and is at the heart of computability theory. We will introduce the use of integrated neural learning and lambda calculi formalization. Finally, we explore execution of a program in {\lambda}-Calculus is based on reductions, we will show that it is enough to learn how to perform these reductions so that we can execute any program. Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational ModelsComment: Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational Model

    Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

    Full text link
    Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.Comment: Updated version, draft of accepted IJCAI2020 Survey Pape
    • …
    corecore